A Novel Stepsize for Gradient Descent Method

In this paper, we propose a novel stepsize for the classical gradient descent scheme to solve unconstrained nonlinear optimization problems. We are concerned with the convex and smooth objective without the globally Lipschitz gradient condition. Our new method just needs the locally Lipschitz gradient but still gets the rate $O(\frac{1}{k})$ of $f(x^k)-f_*$ at most. As … Read more

Minimizing the difference of convex and weakly convex functions via bundle method

We consider optimization problems with objective and constraint being the difference of convex and weakly convex functions. This framework covers a vast family of nonsmooth and nonconvex optimization problems, particularly those involving Difference-of-Convex (DC) functions with known DC decomposition, functions whose gradient is Lipschitz continuous, as well as problems that comprise certain classes of composite … Read more

A Newton-CG based augmented Lagrangian method for finding a second-order stationary point of nonconvex equality constrained optimization with complexity guarantees

\(\) In this paper we consider finding a second-order stationary point (SOSP) of nonconvex equality constrained optimization when a nearly feasible point is known. In particular, we first propose a new Newton-CG method for finding an approximate SOSP of unconstrained optimization and show that it enjoys a substantially better complexity than the Newton-CG method [56]. … Read more

Strengthening SONC Relaxations with Constraints Derived from Variable Bounds

Nonnegativity certificates can be used to obtain tight dual bounds for polynomial optimization problems. Hierarchies of certificate-based relaxations ensure convergence to the global optimum, but higher levels of such hierarchies can become very computationally expensive, and the well-known sums of squares hierarchies scale poorly with the degree of the polynomials. This has motivated research into … Read more

A first-order augmented Lagrangian method for constrained minimax optimization

\(\) In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method recently developed in [26] by the authors. Under some suitable assumptions, … Read more

First-order penalty methods for bilevel optimization

\(\) In this paper we study a class of unconstrained and constrained bilevel optimization problems in which the lower-level part is a convex optimization problem, while the upper-level part is possibly a nonconvex optimization problem. In particular, we propose penalty methods for solving them, whose subproblems turn out to be a structured minimax problem and … Read more

Superiorization: The asymmetric roles of feasibility-seeking and objective function reduction

The superiorization methodology can be thought of as lying conceptually between feasibility-seeking and constrained minimization. It is not trying to solve the full-fledged constrained minimization problem composed from the modeling constraints and the chosen objective function. Rather, the task is to find a feasible point which is “superior” (in a well-defined manner) with respect to … Read more

Computing the Completely Positive Factorization via Alternating Minimization

In this article, we propose a novel alternating minimization scheme for finding completely positive factorizations. In each iteration, our method splits the original factorization problem into two optimization subproblems, the first one being a orthogonal procrustes problem, which is taken over the orthogoal group, and the second one over the set of entrywise positive matrices. … Read more

Joint MSE Constrained Hybrid Beamforming and Reconfigurable Intelligent Surface

In this paper, the symbol detection mean squared error (MSE) constrained hybrid analog and digital beamforming is proposed in millimeter wave (mmWave) system, and the reconfigurable intelligent surface (RIS) is proposed to assist the mmWave system. The inner majorization-minimization (iMM) method is proposed to obtain analog transmitter, RIS and analog receivers, and the alternating direction … Read more

A Riemannian ADMM

We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function, considered in the ambient space. This class of problems finds important applications in machine learning and statistics such as the sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose … Read more