Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

Objective: We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Approach: Within … Read more

An Improved Unconstrained Approach for Bilevel Optimization

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO). In this BLO, the objective function of the upper-level problem is nonconvex and possibly nonsmooth, and the lower-level problem is smooth and strongly convex with respect to the underlying variable $y$. We show that the feasible region of BLO is a Riemannian manifold. … Read more

An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems

This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method for solving linearly-constrained smooth nonconvex composite optimization problems. At each iteration, AS-PAL inexactly solves a possibly nonconvex proximal augmented Lagrangian subproblem with prox stepsize chosen aggressively large so as to speed up its termination. An adaptive ACG variant of FISTA, namely R-FISTA, is then … Read more

The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning

In this paper we study the split minimization problem that consists of two constrained minimization problems in two separate spaces that are connected via a linear operator that maps one space into the other. To handle the data of such a problem we develop a superiorization approach that can reach a feasible point with reduced … Read more

Accelerated gradient methods on the Grassmann and Stiefel manifolds

In this paper we extend the nonconvex version of Nesterov’s accelerated gradient (AG) method to optimization over the Grassmann and Stiefel manifolds. We propose an exponential-based AG algorithm for the Grassmann manifold and a retraction-based AG algorithm that exploits the Cayley transform for both of the Grassmann and Stiefel manifolds. Under some mild assumptions, we … Read more

On the achievement of the complementary approximate Karush-Kuhn-Tucker conditions and algorithmic applications

Focusing on smooth constrained optimization problems, and inspired by the complementary approximate Karush-Kuhn-Tucker (CAKKT) conditions, this work introduces the weighted complementary Approximate Karush-Kuhn-Tucker (WCAKKT) conditions. They are shown to be verified not only by safeguarded augmented Lagrangian methods, but also by inexact restoration methods, inverse and logarithmic barrier methods, and a penalized algorithm for constrained … Read more

A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts

We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the non-differentiability … Read more

An Adaptive Sampling Sequential Quadratic Programming Method for Equality Constrained Stochastic Optimization

This paper presents a methodology for using varying sample sizes in sequential quadratic programming (SQP) methods for solving equality constrained stochastic optimization problems. The first part of the paper deals with the delicate issue of dynamic sample selection in the evaluation of the gradient in conjunction with inexact solutions to the SQP subproblems. Under reasonable … Read more

On the weakest constraint qualification for strong local minimizers

The strong local minimality of feasible points of nonlinear optimization problems is known to possess a characterization by a strengthened version of the Karush-Kuhn-Tucker conditions, as long as the Mangasarian-Fromovitz constraint qualification holds. This strengthened condition is not easy to check algorithmically since it involves the topological interior of some set. In this paper we … Read more

A Reduced Jacobian Scheme with Full Convergence for Multicriteria Optimization

In this paper, we propose a variant of the reduced Jacobian method (RJM) introduced by El Maghri and Elboulqe in [JOTA, 179 (2018) 917–943] for multicriteria optimization under linear constraints. Motivation is that, contrarily to RJM which has only global convergence to Pareto KKT-stationary points in the classical sense of accumulation points, this new variant … Read more