An Exact Penalty Method for Stochastic Equality-Constrained Optimization

In this paper, we study a penalty method for stochastic equality-constrained optimization, where both the objective and constraints are expressed in general expectation form. We introduce a novel adaptive strategy for updating the penalty parameter, guided by iteration progress to balance reductions in the penalty function with improvements in constraint violation, while each penalty subproblem … Read more

GFORS: GPU-Accelerated First-Order Method with Randomized Sampling for Binary Integer Programs

We present GFORS, a GPU-accelerated framework for large binary integer programs. It couples a first-order (PDHG-style) routine that guides the search in the continuous relaxation with a randomized, feasibility-aware sampling module that generates batched binary candidates. Both components are designed to run end-to-end on GPUs with minimal CPU–GPU synchronization. The framework establishes near-stationary-point guarantees for … Read more

A Simple First-Order Algorithm for Full-Rank Equality Constrained Optimization

A very simple first-order algorithm is proposed for solving nonlinear optimization problems with deterministic nonlinear equality constraints. This algorithm adaptively selects steps in the plane tangent to the constraints or steps that reduce infeasibility, without using a merit function or a filter. The tangent steps are based on the AdaGrad method for unconstrained minimization. The … Read more

A Simple Adaptive Proximal Gradient Method for Nonconvex Optimization

Consider composite nonconvex optimization problems where the objective function consists of a smooth nonconvex term (with Lipschitz-continuous gradient) and a convex (possibly nonsmooth) term. Existing parameter-free methods for such problems often rely on complex multi-loop structures, require line searches, or depend on restrictive assumptions (e.g., bounded iterates). To address these limitations, we introduce a novel … Read more

MadNCL: A GPU Implementation of Algorithm NCL for Large-Scale, Degenerate Nonlinear Programs

We present a GPU implementation of Algorithm NCL, an augmented Lagrangian method for solving large-scale and degenerate nonlinear programs. Although interior-point methods and sequential quadratic programming are widely used for solving nonlinear programs, the augmented Lagrangian method is known to offer superior robustness against constraint degeneracies and can rapidly detect infeasibility. We introduce several enhancements … Read more

Progressively Sampled Equality-Constrained Optimization

An algorithm is proposed, analyzed, and tested for solving continuous nonlinear-equality-constrained optimization problems where the constraints are defined by an expectation or an average over a large (finite) number of terms. The main idea of the algorithm is to solve a sequence of equality-constrained problems, each involving a finite sample of constraint-function terms, over which … Read more

On the Convergence and Properties of a Proximal-Gradient Method on Hadamard Manifolds

In this paper, we address composite optimization problems on Hadamard manifolds, where the objective function is given by the sum of a smooth term (not necessarily convex) and a convex term (not necessarily differentiable). To solve this problem, we develop a proximal gradient method defined directly on the manifold, employing a strategy that enforces monotonicity … Read more

Active-Set Identification in Noisy and Stochastic Optimization

Identifying active constraints from a point near an optimal solution is important both theoretically and practically in constrained continuous optimization, as it can help identify optimal Lagrange multipliers and essentially reduces an inequality-constrained problem to an equality-constrained one. Traditional active-set identification guarantees have been proved under assumptions of smoothness and constraint qualifications, and assume exact … Read more

On Relatively Smooth Optimization over Riemannian Manifolds

We study optimization over Riemannian embedded submanifolds, where the objective function is relatively smooth in the ambient Euclidean space. Such problems have broad applications but are still largely unexplored. We introduce two Riemannian first-order methods, namely the retraction-based and projection-based Riemannian Bregman gradient methods, by incorporating the Bregman distance into the update steps. The retraction-based … Read more