Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_0,\ldots,x_p,y)$, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables $x_0,\ldots,x_p,y$, followed by updating the dual variable. We separate the variable $y$ from $x_i$'s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, $\ell_q$ quasi-norm, Schatten-$q$ quasi-norm ($0

Article

Download

View Global Convergence of ADMM in Nonconvex Nonsmooth Optimization