Lipschitz-free Projected Subgradient Method with Time-varying Step-size

We introduce a novel time-varying step-size for the classical projected subgradient method, offering optimal ergodic convergence. Importantly, this approach does not depend on the Lipschitz assumption of the objective function, thereby broadening the convergence result of projected subgradient method to non-Lipschitz case. Article Download View Lipschitz-free Projected Subgradient Method with Time-varying Step-size

Accessible Theoretical Complexity of the Restarted Primal-Dual Hybrid Gradient Method for Linear Programs with Unique Optima

\(\) The restarted primal-dual hybrid gradient method (rPDHG) has recently emerged as an important tool for solving large-scale linear programs (LPs). For LPs with unique optima, we present an iteration bound of \(\widetilde{O}\left(\kappa\Phi\cdot\ln\left(\frac{\|w^*\|}{\varepsilon}\right)\right)\), where \(\varepsilon\) is the target tolerance, \(\kappa\) is the standard matrix condition number, \(\|w^*\|\) is the norm of the optimal solution, and … Read more

Dual Spectral Projected Gradient Method for Generalized Log-det Semidefinite Programming

Log-det semidefinite programming (SDP) problems are optimization problems that often arise from Gaussian graphic models. A log-det SDP problem with an l1-norm term has been examined in many methods, and the dual spectral projected gradient (DSPG) method by Nakagaki et al.~in 2020 is designed to efficiently solve the dual problem of the log-det SDP by … Read more

Second-Order Contingent Derivatives: Computation and Application

It is known that second-order (Studniarski) contingent derivatives can be used to compute tangents to the solution set of a generalized equation when standard (first-order) regularity conditions are absent, but relaxed (second-order) regularity conditions are fulfilled. This fact, roughly speaking, is only relevant in practice as long as the computation of second-order contingent derivatives itself … Read more

Universal subgradient and proximal bundle methods for convex and strongly convex hybrid composite optimization

This paper develops two parameter-free methods for solving convex and strongly convex hybrid composite optimization problems, namely, a composite subgradient type method and a proximal bundle type method. Both functional and stationary complexity bounds for the two methods are established in terms of the unknown strong convexity parameter. To the best of our knowledge, the … Read more

Black-box Optimization Algorithms for Regularized Least-squares Problems

We consider the problem of optimizing the sum of a smooth, nonconvex function for which derivatives are unavailable, and a convex, nonsmooth function with easy-to-evaluate proximal operator. Of particular focus is the case where the smooth part has a nonlinear least-squares structure. We adapt two existing approaches for derivative-free optimization of nonsmooth compositions of smooth … Read more

A progressive decoupling algorithm for minimizing the difference of convex and weakly convex functions over a linear subspace

Commonly, decomposition and splitting techniques for optimization problems strongly depend on convexity. Implementable splitting methods for nonconvex and nonsmooth optimization problems are scarce and often lack convergence guarantees. Among the few exceptions is the Progressive Decoupling Algorithm (PDA), which has local convergence should convexity be elicitable. In this work, we furnish PDA with a descent … Read more

A four-operator splitting algorithm for nonconvex and nonsmooth optimization

\(\) In this work, we address a class of nonconvex nonsmooth optimization problems where the objective function is the sum of two smooth functions (one of which is proximable) and two nonsmooth functions (one proper, closed and proximable, and the other continuous and weakly concave). We introduce a new splitting algorithm that extends the Davis-Yin … Read more

Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization

\(\) This paper considers the problem of minimizing the sum of a smooth function and the Schatten-\(p\) norm of the matrix. Our contribution involves proposing accelerated iteratively reweighted nuclear norm methods designed for solving the nonconvex low-rank minimization problem. Two major novelties characterize our approach. Firstly, the proposed method possesses a rank identification property, enabling … Read more

Composite optimization models via proximal gradient method with increasing adaptive stepsizes

We first consider the convex composite optimization models with locally Lipschitz condition imposed on the gradient of the differentiable term. The classical method which is proximal gradient will be studied with our new strategy of stepsize selection. Our proposed stepsize can be computed conveniently by explicit forms. The sequence of our stepsizes is proved to … Read more