Inverse Optimization via Learning Feasible Regions

We study inverse optimization (IO), where the goal is to use a parametric optimization program as the hypothesis class to infer relationships between input-decision pairs. Most of the literature focuses on learning only the objective function, as learning the constraint function (i.e., feasible regions) leads to nonconvex training programs. Motivated by this, we focus on … Read more

Subgradient Regularization: A Descent-Oriented Subgradient Method for Nonsmooth Optimization

In nonsmooth optimization, a negative subgradient is not necessarily a descent direction, making the design of convergent descent methods based on zeroth-order and first-order information a challenging task. The well-studied bundle methods and gradient sampling algorithms construct descent directions by aggregating subgradients at nearby points in seemingly different ways, and are often complicated or lack … Read more

On the Acceleration of Proximal Bundle Methods

The proximal bundle method (PBM) is a fundamental and computationally effective algorithm for solving nonsmooth optimization problems. In this paper, we present the first variant of the PBM for smooth objectives, achieving an accelerated convergence rate of \(\frac{1}{\sqrt{\epsilon}}\log(\frac{1}{\epsilon})\), where \(\epsilon\) is the desired accuracy. Our approach addresses an open question regarding the convergence guarantee of … Read more

A relaxed version of Ryu’s three-operator splitting method for structured nonconvex optimization

In this work, we propose a modification of Ryu’s splitting algorithm for minimizing the sum of three functions, where two of them are convex with Lipschitz continuous gradients, and the third is an arbitrary proper closed function that is not necessarily convex. The modification is essential to facilitate the convergence analysis, particularly in establishing a … Read more

A note on asynchronous Projective Splitting in Julia

While it has been mathematically proven that Projective Splitting (PS) algorithms can converge in parallel and distributed computing settings, to-date, it appears there were no open-source implementations of the full algorithm with asynchronous computing capabilities. This note fills this gap by providing a Julia implementation of the asynchronous PS algorithm of Eckstein and Combettes for … Read more

NonOpt: Nonconvex, Nonsmooth Optimizer

NonOpt, a C++ software package for minimizing locally Lipschitz objective functions, is presented. The software is intended primarily for minimizing objective functions that are nonconvex and/or nonsmooth. The package has implementations of two main algorithmic strategies: a gradient-sampling and a proximal-bundle method. Each algorithmic strategy can employ quasi-Newton techniques for accelerating convergence in practice. The … Read more

The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

New Sufficient and Necessary Conditions for Constrained and Unconstrained Lipschitzian Error Bounds

Local error bounds play a fundamental role in mathematical programming and variational analysis. They are used e.g. as constraint qualifications in optimization, in developing calculus rules for generalized derivatives in nonsmooth and set-valued analysis, and they serve as a key ingredient in the design and convergence analysis of Newton-type methods for solving systems of possibly … Read more

A Universally Optimal Primal-Dual Method for Minimizing Heterogeneous Compositions

This paper proposes a universal, optimal algorithm for convex minimization problems of the composite form $g_0(x)+h(g_1(x),\dots, g_m(x)) + u(x)$. We allow each $g_j$ to independently range from being nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of H\”older continuous gradients and uniform convexity. Note that, although the objective is built from … Read more

On Sum-Rules for Second-Order Contingent Derivatives

We are concerned with contingent derivatives and their second-order counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention is given to the development of new sum-rules for second-order contingent derivatives. To be precise, we want to find conditions under which the second-order contingent derivative of the sum of a smooth and a set-valued … Read more