A class of spectral bounds for Max k-cut

In this paper we introduce a new class of bounds for the maximum -cut problem on undirected edge-weighted simple graphs. The bounds involve eigenvalues of the weighted adjacency matrix together with geometrical parameters. They generalize previous results on the maximum (2-)cut problem and we demonstrate that they can strictly improve over other eigenvalue bounds from the literature. We also report computational results illustrating the potential impact of the new bounds.