Intersection cuts for factorable MINLP

Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection cuts that exploits the bounds of the domain. Finally, we propose an extension of monoidal strengthening to take advantage of the integrality of the non-basic variables.


ZIB-Report 18-59, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, December 2018



View Intersection cuts for factorable MINLP