A Clustering-based uncertainty set for Robust Optimization

Robust Optimization (RO) is an approach to tackle uncertainties in the parameters of an optimization problem. Constructing an uncertainty set is crucial for RO, as it determines the quality and the conservativeness of the solutions. In this paper, we introduce an approach for constructing a data-driven uncertainty set through volume-based clustering, which we call Minimum-Volume … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm

For continuous decision spaces, nonlinear programs (NLPs) can be efficiently solved via sequential quadratic programming (SQP) and, more generally, sequential convex programming (SCP). These algorithms linearize only the nonlinear equality constraints and keep the outer convex structure of the problem intact, such as (conic) inequality constraints or convex objective terms. The aim of the presented … Read more

Polyhedral Analysis of Quadratic Optimization Problems with Stieltjes Matrices and Indicators

In this paper, we consider convex quadratic optimization problems with indicators on the continuous variables. In particular, we assume that the Hessian of the quadratic term is a Stieltjes matrix, which naturally appears in sparse graphical inference problems and others. We describe an explicit convex formulation for the problem by studying the Stieltjes polyhedron arising … Read more

Adjustable Robust Nonlinear Network Design under Demand Uncertainties

We study network design problems for nonlinear and nonconvex flow models under demand uncertainties. To this end, we apply the concept of adjustable robust optimization to compute a network design that admits a feasible transport for all, possibly infinitely many, demand scenarios within a given uncertainty set. For solving the corresponding adjustable robust mixed-integer nonlinear … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained by … Read more

Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more

Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

On Sparse Canonical Correlation Analysis

The classical Canonical Correlation Analysis (CCA) identifies the correlations between two sets of multivariate variables based on their covariance, which has been widely applied in diverse fields such as computer vision, natural language processing, and speech analysis. Despite its popularity, CCA can encounter challenges in explaining correlations between two variable sets within high-dimensional data contexts. … Read more

An outer approximation method for solving mixed-integer convex quadratic programs with indicators

Mixed-integer convex quadratic programs with indicator variables (MIQP) encompass a wide range of applications, from statistical learning to energy, finance, and logistics. The outer approximation (OA) algorithm has been proven efficient in solving MIQP, and the key to the success of an OA algorithm is the strength of the cutting planes employed. In this paper, … Read more