This paper describes an extension of the BFGS and L-BFGS methods for the minimization of a nonlinear function subject to errors. This work is motivated by applications that contain computational noise, employ low-precision arithmetic, or are subject to statistical noise. The classical BFGS and L-BFGS methods can fail in such circumstances because the updating procedure can be corrupted and the line search can behave erratically. The proposed method addresses these difficulties and ensures that the BFGS update is stable by employing a lengthening procedure that spaces out the points at which gradient differences are collected. A new line search, designed to tolerate errors, guarantees that the Armijo-Wolfe conditions are satisfied under most reasonable conditions, and works in conjunction with the lengthening procedure. The proposed methods are shown to enjoy convergence guarantees for strongly convex functions. Detailed implementations of the methods are presented, together with encouraging numerical results.
Article
View A Noise-Tolerant Quasi-Newton Method for Unconstrained Optimization