Scalable Inference of Sparsely-changing Markov Random Fields with Strong Statistical Guarantees
In this paper, we study the problem of inferring time-varying Markov random fields (MRF), where the underlying graphical model is both sparse and changes sparsely over time. Most of the existing methods for the inference of time-varying MRFs rely on the regularized maximum likelihood estimation (MLE), that typically suffer from weak statistical guarantees and high … Read more