Rigorous packing of unit squares into a circle
Let $r_{n}$ be the radius of the smallest circle into which one can pack $n$ non-overlapping unit squares that are free to rotate. For $n = 1, 2$, $r_{1} = \frac{\sqrt{2}}{2}$ and $r_{2} = \frac{\sqrt{5}}{2}$ are proved to be optimal. For $n \geq 3$ only guesses of $r_{n}$ are known. This paper introduces a computer-assisted … Read more