A semidefinite programming based heuristic for graph coloring

The Lovasz theta function is a well-known polynomial lower bound on the chromatic number. . Any near optimal solution of its semidefinite programming formulation carries valuable information on how to color the graph. A self-contained presentation of the role of this formulation in obtaining heuristics for the graph coloring problem is presented.


Submitted to Discrete Applied Mathematics, Special Issue on Computational Methods in Graph Coloring.