Copositive programming motivated bounds on the stability and the chromatic numbers

The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the … Read more

Copositive programming motivated bounds on the stability and the chromatic number

The Lovasz theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovasz theta number toward the … Read more

A semidefinite programming based heuristic for graph coloring

The Lovasz theta function is a well-known polynomial lower bound on the chromatic number. . Any near optimal solution of its semidefinite programming formulation carries valuable information on how to color the graph. A self-contained presentation of the role of this formulation in obtaining heuristics for the graph coloring problem is presented. CitationSubmitted to Discrete … Read more

Semidefinite programming relaxations for graph coloring and maximal clique problems

The semidefinite programming formulation of the Lovasz theta number does not only give one of the best polynomial simultaneous bounds on the chromatic number and the clique number of a graph, but also leads to heuristics for graph coloring and extracting large cliques. This semidefinite programming formulation can be tightened toward either number by adding … Read more