We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem arises in a number of other contexts, e.g. it is a relaxation of general mixed-integer programming. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can be derived and used in a branch-and-cut scheme for problems with semi-continuous variables. To demonstrate the effectiveness of these inequalities, which we call collectively semi-continuous cuts, we present computational results on real instances of the unit commitment problem.

## Citation

Technical report, Department of Industrial Engineering, Texas Tech University, June, 2011.

## Article

View A Polyhedral Study of the Semi-Continuous Knapsack Problem