An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

Stable Set Polytopes with High Lift-and-Project Ranks for the Lovász-Schrijver SDP Operator

\(\) We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator \( \text{LS}_+\), with a particular focus on a search for relatively small graphs with high \( \text{LS}_+\)-rank (the least number of iterations of the \( \text{LS}_+\) operator on the fractional stable set polytope to compute … Read more

Column Elimination for Capacitated Vehicle Routing Problems

We introduce a column elimination procedure for the capacitated vehicle routing problem. Our procedure maintains a decision diagram to represent a relaxation of the set of feasible routes, over which we define a constrained network flow. The optimal solution corresponds to a collection of paths in the decision diagram and yields a dual bound. The … Read more

Evaluation of Political Redistricting in Japan by Optimization and Enumeration

The political/electoral districting problem for the single-seat constituency system is a problem of decomposing a graph into connected components of a given number of seats under several conditions and objectives. We evaluate and analyze the current division of single-seat constituencies for the House of Representatives using optimization and enumeration. The objective function is to minimize … Read more

On Supervalid Inequalities for Binary Interdiction Games

Supervalid inequalities are a specific type of constraints often used within the branch-and-cut framework to strengthen the linear relaxation of mixed-integer programs. These inequalities share the particular characteristic of potentially removing feasible integer solutions as long as they are already dominated by an incumbent solution. This paper focuses on supervalid inequalities for solving binary interdiction … Read more

Submodular maximization and its generalization through an intersection cut lens

\(\) We study a mixed-integer set \(\mathcal{S}:=\{(x,t) \in \{0,1\}^n \times \mathbb{R}: f(x) \ge t\}\) arising in the submodular maximization problem, where \(f\) is a submodular function defined over \(\{0,1\}^n\). We use intersection cuts to tighten a polyhedral outer approximation of \(\mathcal{S}\). We construct a continuous extension \(\mathsf{F}\) of \(f\), which is convex and defined over … Read more

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts

Disjunctive cutting planes can tighten a relaxation of a mixed-integer linear program. Traditionally, such cuts are obtained by solving a higher-dimensional linear program, whose additional variables cause the procedure to be computationally prohibitive. Adopting a V-polyhedral perspective is a practical alternative that enables the separation of disjunctive cuts via a linear program with only as … Read more

A Column Generation Approach for the Lexicographic Optimization of Intra-Hospital Transports

Over the last fewyears, the efficient design of processes in hospitals and medical facilities has received more and more attention, particularly when the improvement of the processes is aimed at relieving theworkload of medical staff. To this end,we have developed a method to determine optimal allocations of intra-hospital transports to hospital transport employees. When optimizing … Read more

A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

Political districting to minimize county splits

When partitioning a state into political districts, a common criterion is that political subdivisions like counties should not be split across multiple districts. This criterion is encoded into most state constitutions and is sometimes enforced quite strictly by the courts. However, map drawers, courts, and the public typically do not know what amount of splitting … Read more