On the Maximal Extensions of Monotone Operators and Criteria for Maximality

Within a nonzero, real Banach space we study the problem of characterising a maximal extension of a monotone operator in terms of minimality properties of representative functions that are bounded by the Penot and Fitzpatrick functions. We single out a property of this space of representative functions that enable a very compact treatment of maximality and pre-maximality issues.

Citation

Submitted to Journal of Convex Analysis

Article

Download

View PDF