On the B-differential of the componentwise minimum of two affine vector functions

This paper focuses on the description and computation of the B-differential of the componentwise minimum of two affine vector functions. This issue arises in the reformulation of the linear complementarity problem with the Min C-function. The question has many equivalent formulations and we identify some of them in linear algebra, convex analysis and discrete geometry. … Read more

Balancing Communication and Computation in Gradient Tracking Algorithms for Decentralized Optimization

Gradient tracking methods have emerged as one of the most popular approaches for solving decentralized optimization problems over networks. In this setting, each node in the network has a portion of the global objective function, and the goal is to collectively optimize this function. At every iteration, gradient tracking methods perform two operations (steps): (1) … Read more

Proximal bundle methods for hybrid weakly convex composite optimization problems

This paper establishes the iteration-complexity of proximal bundle methods for solving hybrid (i.e., a blend of smooth and nonsmooth) weakly convex composite optimization (HWC-CO) problems. This is done in a unified manner by considering a proximal bundle framework (PBF) based on a generic bundle update scheme which includes various well-known bundle update schemes. In contrast … Read more

An Inexact Proximal-indefinite Stochastic ADMM

In this paper, we develop an Inexact Proximal-indefinite Stochastic ADMM (IPS-ADMM) for solving a class of separable convex optimization problems whose objective functions consist of two parts: one is an average of many smooth convex functions and another is a convex but possibly nonsmooth function. The involved smooth subproblem is tackled by an inexact accelerated … Read more

(ε-)Efficiency in Fractional Vector Optimization

The issue of characterizing completely efficient (Pareto) solutions to a fractional vector (multiobjective or multicriteria) minimization problem, where the involved functions are convex, has not been addressed previously. Thanks to an earlier characterization of weak efficiency in difference vector optimization by El Maghri, we get a vectorial necessary and sufficient condition given in terms of … Read more

On a Frank-Wolfe Approach for Abs-smooth Functions

We propose an algorithm which appears to be the first bridge between the fields of conditional gradient methods and abs-smooth optimization. Our nonsmooth nonconvex problem setting is motivated by machine learning, since the broad class of abs-smooth functions includes, for instance, the squared $l_2$-error of a neural network with ReLU or hinge loss activation. To … Read more

A successive centralized circumcentered-reflection method for the convex feasibility problem

In this paper, we present a successive centralization process for the circumcentered-reflection scheme with several control sequences for solving the convex feasibility problem in Euclidean space. Assuming that a standard error bound holds, we prove the linear convergence of the method with the most violated constraint control sequence. Moreover, under additional smoothness assumptions on the … Read more

MGProx: A nonsmooth multigrid proximal gradient method with adaptive restriction for strongly convex optimization

We study the combination of proximal gradient descent with multigrid for solving a class of possibly nonsmooth strongly convex optimization problems. We propose a multigrid proximal gradient method called MGProx, which accelerates the proximal gradient method by multigrid, based on utilizing hierarchical information of the optimization problem. MGProx applies a newly introduced adaptive restriction operator … Read more

Projection free methods on product domains

Projection-free block-coordinate methods avoid high computational cost per iteration and at the same time exploit the particular problem structure of product domains. Frank-Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank-Wolfe theory and the block-coordinate case. Moreover, most of … Read more

Cutting plane reusing methods for multiple dual optimizations

We consider solving a group of dual optimization problems that share a core structure: Every primal problem of the group is obtained by the right-hand side variation of constraints in the original primal problem, while the other core part of the original primal problem, such as the objective and the left-hand side of the constraints, … Read more