In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_1,\ldots,x_p,y)$, subject to linear equality constraints that couple $x_1,\ldots,x_p,y$, where $p\ge 1$ is an integer. Our ADMM sequentially updates the primal variables in the order $x_1,\ldots,x_p,y$, followed by updating the dual variable. We separate the variable $y$ from $x_i$'s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, $\ell_q$ quasi-norm, Schatten-$q$ quasi-norm ($0

## Citation

UCLA CAM Report 15-61, 2015

## Article

View Global Convergence of ADMM in Nonconvex Nonsmooth Optimization