A Line Search Filter Sequential Adaptive Cubic Regularisation Algorithm for Nonlinearly Constrained Optimization

In this paper, a sequential adaptive regularization algorithm using cubics (ARC) is presented to solve nonlinear equality constrained optimization. It is motivated by the idea of handling constraints in sequential quadratic programming methods. In each iteration, we decompose the new step into the sum of the normal step and the tangential step by using composite … Read more

Examples of slow convergence for adaptive regularization optimization methods are not isolated

The adaptive regularization algorithm for unconstrained nonconvex optimization was shown in Nesterov and Polyak (2006) and Cartis, Gould and Toint (2011) to  require, under standard assumptions, at most O(\epsilon^{3/(3-q)}) evaluations of the objective function and its derivatives of degrees one and two to produce an \epsilon-approximate critical point of order q in {1,2}. This bound … Read more

The Augmented Factorization Bound for Maximum-Entropy Sampling

The maximum-entropy sampling problem (MESP) aims to select the most informative principal submatrix of a prespecified size from a given covariance matrix. This paper proposes an augmented factorization bound for MESP based on concave relaxation. By leveraging majorization and Schur-concavity theory, we demonstrate that this new bound dominates the classic factorization bound of Nikolov (2015) and a recent … Read more

Variance-reduced first-order methods for deterministically constrained stochastic nonconvex optimization with strong convergence guarantees

\(\) In this paper, we study a class of deterministically constrained stochastic optimization problems. Existing methods typically aim to find an \(\epsilon\)-stochastic stationary point, where the expected violations of both constraints and first-order stationarity are within a prescribed accuracy \(\epsilon\). However, in many practical applications, it is crucial that the constraints be nearly satisfied with … Read more

Randomized Roundings for a Mixed-Integer Elliptic Control System

\(\) We present randomized reconstruction approaches for optimal solutions to mixed-integer elliptic PDE control systems. Approximation properties and relations to sum-up rounding are derived using the cut norm. This enables us to dispose of space-filling curves required for sum-up rounding. Rates of almost sure convergence in the cut norm and the SUR norm in control … Read more

Global convergence of a second-order augmented Lagrangian method under an error bound condition

This work deals with convergence to points satisfying the weak second-order necessary optimality conditions of a second-order safeguarded augmented Lagrangian method from the literature. To this end, we propose a new second-order sequential optimality condition that is, in a certain way, based on the iterates generated by the algorithm itself. This also allows us to … Read more

A homotopy for the reliable estimation of model parameters in chromatography processes

Mathematical modeling, simulation, and optimization can significantly support the development and characterization of chromatography steps in the biopharmaceutical industry. Particularly mechanistic models become preferably used, as these models, once carefully calibrated, can be employed for a reliable optimization. However, model calibration is a difficult task in this context due to high correlations between parameters, highly … Read more

Global convergence of an augmented Lagrangian method for nonlinear programming via Riemannian optimization

Considering a standard nonlinear programming problem, one may view a subset of the equality constraints as an embedded Riemannian manifold. In this paper we investigate the differences between the Euclidean and the Riemannian approach for this problem. It is well known that the linear independence constraint qualification for both approaches are equivalent. However, when considering … Read more

Second-Order Contingent Derivatives: Computation and Application

It is known that second-order (Studniarski) contingent derivatives can be used to compute tangents to the solution set of a generalized equation when standard (first-order) regularity conditions are absent, but relaxed (second-order) regularity conditions are fulfilled. This fact, roughly speaking, is only relevant in practice as long as the computation of second-order contingent derivatives itself … Read more

A Unified Funnel Restoration SQP Algorithm

We consider nonlinearly constrained optimization problems and discuss a generic double-loop framework consisting of four algorithmic ingredients that unifies a broad range of nonlinear optimization solvers. This framework has been implemented in the open-source solver Uno, a Swiss-army knife-like C++ optimization framework that unifies many nonlinearly constrained nonconvex optimization solvers. We illustrate the framework with … Read more