The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: the first one applies an l1 exact penalty function, the second uses an augmented Lagrangian and the third one combines the former two, resulting in a new algorithm. These methods are implemented within the NOMAD software package and their impact are assessed through computational experiments on 65 analytical test problems and 4 simulation-based engineering applications.
Citation
European Journal of Operational Research, 268(1), p. 13-24, 2018.