We study the Partition Coloring Problem (PCP), a generalization of the Vertex Coloring Problem where the vertex set is partitioned. The PCP asks to select one vertex for each subset of the partition in such a way that the chromatic number of the induced graph is minimum. We propose a new Integer Linear Programming formulation with an exponential number of variables. To solve this formulation to optimality, we design an effective Branch-and-Price algorithm. Good quality initial solutions are computed via a new metaheuristic algorithm based on adaptive large neighbourhood search. Extensive computational experiments on a benchmark test of instances from the literature show that our Branch-and-Price algorithm, combined with the new metaheuristic algorithm, is able to solve for the first time to proven optimality several open instances, and compares favourably with the current state-of-the-art exact algorithm.

## Citation

F. Furini, E. Malaguti, S. Santini. An Exact Algorithm for the Partition Coloring Problem. Optimization Online, 2016