In this paper, we consider smooth convex optimization problems with simple constraints and inexactness in the oracle information such as value, partial or directional derivatives of the objective function. We introduce a unifying framework, which allows to construct different types of accelerated randomized methods for such problems and to prove convergence rate theorems for them. We focus on accelerated random block-coordinate descent, accelerated random directional search, accelerated random derivative-free method and, using our framework, provide their versions for problems with inexact oracle information. Our contribution also includes accelerated random block-coordinate descent with inexact oracle and entropy proximal setup as well as derivative-free version of this method.