Balancing Communication and Computation in Gradient Tracking Algorithms for Decentralized Optimization

Gradient tracking methods have emerged as one of the most popular approaches for solving decentralized optimization problems over networks. In this setting, each node in the network has a portion of the global objective function, and the goal is to collectively optimize this function. At every iteration, gradient tracking methods perform two operations (steps): (1) … Read more

An Inexact Proximal-indefinite Stochastic ADMM

In this paper, we develop an Inexact Proximal-indefinite Stochastic ADMM (IPS-ADMM) for solving a class of separable convex optimization problems whose objective functions consist of two parts: one is an average of many smooth convex functions and another is a convex but possibly nonsmooth function. The involved smooth subproblem is tackled by an inexact accelerated … Read more

A successive centralized circumcentered-reflection method for the convex feasibility problem

In this paper, we present a successive centralization process for the circumcentered-reflection scheme with several control sequences for solving the convex feasibility problem in Euclidean space. Assuming that a standard error bound holds, we prove the linear convergence of the method with the most violated constraint control sequence. Moreover, under additional smoothness assumptions on the … Read more

Projection free methods on product domains

Projection-free block-coordinate methods avoid high computational cost per iteration and at the same time exploit the particular problem structure of product domains. Frank-Wolfe-like approaches rank among the most popular ones of this type. However, as observed in the literature, there was a gap between the classical Frank-Wolfe theory and the block-coordinate case. Moreover, most of … Read more

Semi-Infinite Generalized Disjunctive and Mixed Integer Convex Programs with(out) Uncertainty

In this paper, we introduce semi-infinite generalized disjunctive programs that are defined by logical propositions along with disjunctions of sets of logical equations and infinite number of algebraic inequalities. We denote these programs by SIGDPs. For SIGDPs with linear and convex inequalities, we present new reformulations: semi-infinite mixed-binary/disjunctive linear programs and semi-infinite mixed-binary/disjunctive convex programs, … Read more

A Novel Stepsize for Gradient Descent Method

In this paper, we propose a novel stepsize for the classical gradient descent scheme to solve unconstrained nonlinear optimization problems. We are concerned with the convex and smooth objective without the globally Lipschitz gradient condition. Our new method just needs the locally Lipschitz gradient but still gets the rate $O(\frac{1}{k})$ of $f(x^k)-f_*$ at most. As … Read more

The Jordan algebraic structure of the rotated quadratic cone

In this paper, we look into the rotated quadratic cone and analyze its algebraic structure. We construct an algebra associated with this cone and show that this algebra is a Euclidean Jordan algebra (EJA) with a certain inner product. We also demonstrate some spectral and algebraic characteristics of this EJA. The rotated quadratic cone is … Read more

Superiorization: The asymmetric roles of feasibility-seeking and objective function reduction

The superiorization methodology can be thought of as lying conceptually between feasibility-seeking and constrained minimization. It is not trying to solve the full-fledged constrained minimization problem composed from the modeling constraints and the chosen objective function. Rather, the task is to find a feasible point which is “superior” (in a well-defined manner) with respect to … Read more

Orbital Crossover

Symmetry in optimization has been known to wreak havoc in optimization algorithms. Often, some of the hardest instances are highly symmetric. This is not the case in linear programming, as symmetry allows one to reduce the size of the problem, possibly dramatically, while still maintaining the same optimal objective value. This is done by aggregating … Read more

Regularized Nonsmooth Newton Algorithms for Best Approximation

We consider the problem of finding the best approximation point from a polyhedral set, and its applications, in particular to solving large-scale linear programs. The classical projection problem has many various and many applications. We study a regularized nonsmooth Newton type solution method where the Jacobian is singular; and we compare the computational performance to … Read more