Novel stepsize for some accelerated and stochastic optimization methods

New first-order methods now need to be improved to keep up with the constant developments in machine learning and mathematics. They are commonly used methods to solve optimization problems. Among them, the algorithm branch based on gradient descent has developed rapidly with good results achieved. Not out of that trend, in this article, we research … Read more

The stochastic Ravine accelerated gradient method with general extrapolation coefficients

Abstract: In a real Hilbert space domain setting, we study the convergence properties of the stochastic Ravine accelerated gradient method for convex differentiable optimization. We consider the general form of this algorithm where the extrapolation coefficients can vary with each iteration, and where the evaluation of the gradient is subject to random errors. This general … Read more

On Averaging and Extrapolation for Gradient Descent

\(\) This work considers the effect of averaging, and more generally extrapolation, of the iterates of gradient descent in smooth convex optimization. After running the method, rather than reporting the final iterate, one can report either a convex combination of the iterates (averaging) or a generic combination of the iterates (extrapolation). For several common stepsize … Read more

A novel adaptive stepsize for proximal gradient method solving mixed variational inequality problems and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm use a novel adaptive stepsize which is proved to be increasing to a positive limitation. The weak convergence and strong convergence with R-linear rate of our new algorithm … Read more

Variance Reduction and Low Sample Complexity in Stochastic Optimization via Proximal Point Method

This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity … Read more

Accurate and Warm-Startable Linear Cutting-Plane Relaxations for ACOPF

We present a linear cutting-plane relaxation approach that rapidly proves tight lower bounds for the Alternating Current Optimal Power Flow Problem (ACOPF). Our method leverages outer-envelope linear cuts for well-known second-order cone relaxations for ACOPF along with modern cut management techniques. These techniques prove effective on a broad family of ACOPF instances, including the largest … Read more

Some Primal-Dual Theory for Subgradient Methods for Strongly Convex Optimization

We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a … Read more

Policy with guaranteed risk-adjusted performance for multistage stochastic linear problems

Risk-averse multi-stage problems and their applications are gaining interest in various fields of applications. Under convexity assumptions, the resolution of these problems can be done with trajectory following dynamic programming algorithms like Stochastic Dual Dynamic Programming (SDDP) to access a deterministic lower bound, and dual SDDP for deterministic upper bounds. In this paper, we leverage … Read more

Active Set-based Inexact Proximal Bundle Algorithm for Stochastic Quadratic Programming

In this paper, we examine two-stage stochastic quadratic programming problems, where the objective function of the first and second stages are quadratic functions, and the constraints are linear. The uncertainty is associated with the second-stage right-hand side and variable bounds. In large-scale settings, when the number of scenarios necessary to represent the underlying stochastic process … Read more