We construct norming meshes for polynomial optimization by the classical Markov inequality on general convex bodies in R^d, and by a tangential Markov inequality via an estimate of Dubiner distance on smooth convex bodies. These allow to compute a (1−eps)-approximation to the minimum of any polynomial of degree not exceeding n by O((n/sqrt(eps))^(ad)) samples, with a=2 in the general case, and a=1 in the smooth case. Such constructions are based on three cornerstones of convex geometry, Bieberbach volume inequality and Leichtweiss inequality on the affine breadth eccentricity, and the Rolling Ball Theorem, respectively.

## Citation

Preprint, August 2018