Weighted Geometric Mean, Minimum Mediated Set, and Optimal Second-Order Cone Representation

We study optimal second-order cone representations for weighted geometric means, which turns out to be closely related to minimum mediated sets. Several lower bounds and upper bounds on the size of optimal second-order cone representations are proved. In the case of bivariate weighted geometric means (equivalently, one dimensional mediated sets), we are able to prove … Read more

Learning for Spatial Branching: An Algorithm Selection Approach

The use of machine learning techniques to improve the performance of branch-and-bound optimization algorithms is a very active area in the context of mixed integer linear problems, but little has been done for non-linear optimization. To bridge this gap, we develop a learning framework for spatial branching and show its efficacy in the context of … Read more

Bounding the separable rank via polynomial optimization

We investigate questions related to the set $\mathcal{SEP}_d$ consisting of the linear maps $\rho$ acting on $\mathbb{C}^d\otimes \mathbb{C}^d$ that can be written as a convex combination of rank one matrices of the form $xx^*\otimes yy^*$. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In … Read more

Sums of Separable and Quadratic Polynomials

We study separable plus quadratic (SPQ) polynomials, i.e., polynomials that are the sum of univariate polynomials in different variables and a quadratic polynomial. Motivated by the fact that nonnegative separable and nonnegative quadratic polynomials are sums of squares, we study whether nonnegative SPQ polynomials are (i) the sum of a nonnegative separable and a nonnegative … Read more

Finite convergence of sum-of-squares hierarchies for the stability number of a graph

We investigate a hierarchy of semidefinite bounds $\vartheta^{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G) -1$ steps. Even the weaker conjecture claiming finite convergence is still open. … Read more

Complexity, Exactness, and Rationality in Polynomial Optimization

We study representation of solutions and certificates to quadratic and cubic optimization problems. Specifically, we focus on minimizing a cubic function over a polyhedron and also minimizing a linear function over quadratic constraints. We show when there exist rational feasible solutions (and if we can detect them) and when we can prove feasibility of sublevel … Read more

Optimizing hypergraph-based polynomials modeling job-occupancy in queueing with redundancy scheduling

We investigate two classes of multivariate polynomials with variables indexed by the edges of a uniform hypergraph and coefficients depending on certain patterns of union of edges. These polynomials arise naturally to model job-occupancy in some queuing problems with redundancy scheduling policy. The question, posed by Cardinaels, Borstand van Leeuwaarden (arXiv:2005.14566, 2020), is to decide … Read more

Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy

The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is … Read more

Complexity Aspects of Fundamental Questions in Polynomial Optimization

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a candidate point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the … Read more

On the Complexity of Finding a Local Minimizer of a Quadratic Function over a Polytope

We show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c \ge 0$) of a local minimizer of an $n$-variate quadratic function over a polytope. This result (even with $c=0$) answers a question of Pardalos and Vavasis that appeared in 1992 on a … Read more