First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method

In linear optimization, matrix structure can often be exploited algorithmically. However, beneficial presolving reductions sometimes destroy the special structure of a given problem. In this article, we discuss structure-aware implementations of presolving as part of a parallel interior-point method to solve linear programs with block-diagonal structure, including both linking variables and linking constraints. While presolving reductions are often mathematically simple, their implementation in a high-performance computing environment is a complex endeavor. We report results on impact, performance, and scalability of the resulting presolving routines on real-world energy system models with up to 700 million nonzero entries in the constraint matrix.

Citation

ZR-19-39, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, 07/2019

Article

Download

View First Experiments with Structure-Aware Presolving for a Parallel Interior-Point Method