Exploiting Symmetries in Optimal Quantum Circuit Design

A physical limitation in quantum circuit design is the fact that gates in a quantum system can only act on qubits that are physically adjacent in the architecture. To overcome this problem, SWAP gates need to be inserted to make the circuit physically realizable. The nearest neighbour compliance problem (NNCP) asks for an optimal embedding … Read more

Computational Guarantees for Restarted PDHG for LP based on “Limiting Error Ratios” and LP Sharpness

In recent years, there has been growing interest in solving linear optimization problems – or more simply “LP” – using first-order methods in order to avoid the costly matrix factorizations of traditional methods for huge-scale LP instances. The restarted primal-dual hybrid gradient method (PDHG) – together with some heuristic techniques – has emerged as a … Read more

On the Relation Between LP Sharpness and Limiting Error Ratio and Complexity Implications for Restarted PDHG

There has been a recent surge in development of first-order methods (FOMs) for solving huge-scale linear programming (LP) problems. The attractiveness of FOMs for LP stems in part from the fact that they avoid costly matrix factorization computation. However, the efficiency of FOMs is significantly influenced – both in theory and in practice – by … Read more

Distributionally robust optimization through the lens of submodularity

Distributionally robust optimization is used to solve decision making problems under adversarial uncertainty where the distribution of the uncertainty is itself ambiguous. In this paper, we identify a class of these instances that is solvable in polynomial time by viewing it through the lens of submodularity. We show that the sharpest upper bound on the … Read more

Budget-Constrained Maximization of “Cobb-Douglas with Linear Components” Utility Function

In what follows, we provide the demand analysis associated with budget-constrained linear utility maximization for each of several categories of goods, with the marginal rate of consumption expenditure-as a share of wealth- being a positive constant less than or equal to one. The marginal rate of consumption expenditure is endogenously determined, by a budget-constrained “Cobb-Douglas … Read more

Combining Precision Boosting with LP Iterative Refinement for Exact Linear Optimization

This article studies a combination of the two state-of-the-art algorithms for the exact solution of linear programs (LPs) over the rational numbers, i.e., without any roundoff errors or numerical tolerances. By integrating the method of precision boosting inside an LP iterative refinement loop, the combined algorithm is able to leverage the strengths of both methods: … Read more

Error estimate for regularized optimal transport problems via Bregman divergence

Regularization by the Shannon entropy enables us to efficiently and approximately solve optimal transport problems on a finite set. This paper is concerned with regularized optimal transport problems via Bregman divergence. We introduce the required properties for Bregman divergences, provide a non-asymptotic error estimate for the regularized problem, and show that the error estimate becomes … Read more

PaPILO: A Parallel Presolving Library for Integer and Linear Optimization with Multiprecision Support

Presolving has become an essential component of modern MIP solvers both in terms of computational performance and numerical robustness. In this paper we present PaPILO (https://github.com/scipopt/papilo), a new C++ header-only library that provides a large set of presolving routines for MIP and LP problems from the literature. The creation of \papilo was motivated by the … Read more

On the Number of Pivots of Dantzig’s Simplex Methods for Linear and Convex Quadratic Programs

Refining and extending works by Ye and Kitahara-Mizuno, this paper presents new results on the number of pivots of simplex-type methods for solving linear programs of the Leontief kind, certain linear complementarity problems of the P kind, and nonnegative constrained convex quadratic programs. Our results contribute to the further understanding of the complexity and efficiency … Read more

Application of a Gas Market Model with Linear Programming. The Influence of the Dollar Exchange Rate on the Wholesale Price of Natural Gas in Northwest Europe until 2040

The price of natural gas at wholesale markets in Northwest Europe is influenced by numerous parameters. The USD to EUR exchange rate is one of these parameters. Using the LP-based gas market model WEGA, this paper will examine the impact of USD exchange rates on wholesale natural gas prices in Northwest Europe from 2025 to … Read more