Solving non-monotone equilibrium problems via a DIRECT-type approach

A global optimization approach for solving non-monotone equilibrium problems (EPs) is proposed. The class of (regularized) gap functions is used to reformulate any EP as a constrained global optimization program and some bounds on the Lipschitz constant of such functions are provided. The proposed global optimization approach is a combination of an improved version of the \texttt{DIRECT} algorithm, which exploits local bounds of the Lipschitz constant of the objective function, with local minimizations. Unlike most existing solution methods for EPs, no monotonicity-type condition is assumed in this paper. Preliminary numerical results on several classes of EPs show the effectiveness of the approach.

Citation

Technical Report, Department of Computer Science, University of Pisa, Italy, February 2020.

Article

Download

View Solving non-monotone equilibrium problems via a DIRECT-type approach