We study the use of inverse harmonic Rayleigh quotients with target for the stepsize selection in gradient methods for nonlinear unconstrained optimization problems. This provides not only an elegant and flexible framework to parametrize and reinterpret existing stepsize schemes, but also gives inspiration for new flexible and tunable families of steplengths. In particular, we analyze and extend the adaptive Barzilai-Borwein method to a new family of stepsizes. While this family exploits negative values for the target, we also consider positive targets. We present a convergence analysis for quadratic problems extending results by Dai and Liao (2002), and carry out experiments outlining the potential of the approaches.
Citation
arXiv:2202.10213; TU Eindhoven, PO Box 513, Eindhoven, 5600 MB, The Netherlands; 02/22