Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers and their derivatives are important in interior-point methods for nonsymmetric conic formulations of sparse semidefinite programs. The algorithms are based on the multifrontal method for sparse Cholesky factorization.
Citation
Published in Optimization Methods and Software: http://www.tandfonline.com/doi/abs/10.1080/10556788.2012.684353