Faces of homogeneous cones and applications to homogeneous chordality

A convex cone K is said to be homogeneous if its group of automorphisms acts transitively on its relative interior. Important examples of homogeneous cones include symmetric cones and cones of positive semidefinite (PSD) matrices that follow a sparsity pattern given by a homogeneous chordal graph. Our goal in this paper is to elucidate the … Read more

Sparse Polynomial Matrix Optimization

A polynomial matrix inequality is a statement that a symmetric polynomial matrix is positive semidefinite over a given constraint set. Polynomial matrix optimization concerns minimizing the smallest eigenvalue of a symmetric polynomial matrix subject to a tuple of polynomial matrix inequalities. This work explores the use of sparsity methods in reducing the complexity of sum-of-squares … Read more

Performance Estimation for Smooth and Strongly Convex Sets

We extend recent computer-assisted design and analysis techniques for first-order optimization over structured functions–known as performance estimation–to apply to structured sets. We prove “interpolation theorems” for smooth and strongly convex sets with Slater points and bounded diameter, showing a wide range of extremal questions amount to structured mathematical programs. Prior function interpolation theorems are recovered … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Connectivity via convexity: Bounds on the edge expansion in graphs

Convexification techniques have gained increasing interest over the past decades. In this work, we apply a recently developed convexification technique for fractional programs by He, Liu and Tawarmalani (2024) to the problem of determining the edge expansion of a graph. Computing the edge expansion of a graph is a well-known, difficult combinatorial problem that seeks … Read more

Dual Spectral Projected Gradient Method for Generalized Log-det Semidefinite Programming

Log-det semidefinite programming (SDP) problems are optimization problems that often arise from Gaussian graphic models. A log-det SDP problem with an l1-norm term has been examined in many methods, and the dual spectral projected gradient (DSPG) method by Nakagaki et al.~in 2020 is designed to efficiently solve the dual problem of the log-det SDP by … Read more

Exact SDP relaxations for a class of quadratic programs with finite and infinite quadratic constraints

We investigate exact semidefinite programming (SDP) relaxations for the problem of minimizing a nonconvex quadratic objective function over a feasible region defined by both finitely and infinitely many nonconvex quadratic inequality constraints (semi-infinite QCQPs). Specifically, we present two sufficient conditions on the feasible region under which the QCQP, with any quadratic objective function over the … Read more

Analytic Formulas for Alternating Projection Sequences for the Positive Semidefinite Cone and an Application to Convergence Analysis

\(\) We derive analytic formulas for the alternating projection method applied to the cone \(S^n_+\) of positive semidefinite matrices and an affine subspace. More precisely, we find recursive relations on parameters representing a sequence constructed by the alternating projection method. By applying these formulas, we analyze the alternating projection method in detail and show that … Read more

Application of the Lovász-Schrijver Operator to Compact Stable Set Integer Programs

\(\)The Lov\’asz theta function $\theta(G)$ provides a very good upper bound on the stability number of a graph $G$. It can be computed in polynomial time by solving a semidefinite program (SDP), which also turns out to be fairly tractable in practice. Consequently, $\theta(G)$ achieves a hard-to-beat trade-off between computational effort and strength of the … Read more

On the strength of Burer’s lifted convex relaxation to quadratic programming with ball constraints

We study quadratic programs with m ball constraints, and the strength of a lifted convex relaxation for it recently proposed by Burer (2024). Burer shows this relaxation is exact when m=2. For general m, Burer (2024) provides numerical evidence that this lifted relaxation is tighter than the Kronecker product based Reformulation Linearization Technique (RLT) inequalities … Read more