Exploiting Sign Symmetries in Minimizing Sums of Rational Functions

This paper is devoted to the problem of minimizing a sum of rational functions over a basic semialgebraic set. We provide a hierarchy of sum of squares (SOS) relaxations that is dual to the generalized moment problem approach due to Bugarin, Henrion, and Lasserre. The investigation of the dual SOS aspect offers two benefits: 1) … Read more

Edge expansion of a graph: SDP-based computational strategies

Computing the edge expansion of a graph is a famously hard combinatorial problem for which there have been many approximation studies. We present two variants of exact algorithms using semidefinite programming (SDP) to compute this constant for any graph. The first variant uses the SDP relax- ation first to reduce the search space considerably. One … Read more

Strengthening Lasserre’s Hierarchy in Real and Complex Polynomial Optimization

We establish a connection between multiplication operators and shift operators. Moreover, we derive positive semidefinite conditions of finite rank moment sequences and use these conditions to strengthen Lasserre’s hierarchy for real and complex polynomial optimization. Integration of the strengthening technique with sparsity is considered. Extensive numerical experiments show that our strengthening technique can significantly improve … Read more

On Averaging and Extrapolation for Gradient Descent

\(\) This work considers the effect of averaging, and more generally extrapolation, of the iterates of gradient descent in smooth convex optimization. After running the method, rather than reporting the final iterate, one can report either a convex combination of the iterates (averaging) or a generic combination of the iterates (extrapolation). For several common stepsize … Read more

T-semidefinite programming relaxation with third-order tensors for constrained polynomial optimization

We study T-semidefinite programming (SDP) relaxation for constrained polynomial optimization problems (POPs). T-SDP relaxation for unconstrained POPs was introduced by Zheng, Huang and Hu in 2022. In this work, we propose a T-SDP relaxation for POPs with polynomial inequality constraints and show that the resulting T-SDP relaxation formulated with third-order tensors can be transformed into … Read more

Cuts and semidefinite liftings for the complex cut polytope

\(\) We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices \(xx^{\mathrm{H}}\), where the elements of \(x \in \mathbb{C}^n\) are \(m\)th unit roots. These polytopes have applications in \({\text{MAX-3-CUT}}\), digital communication technology, angular synchronization and more generally, complex quadratic programming. For \({m=2}\), the complex cut polytope corresponds to the well-known cut … Read more

Refined TSSOS

The moment-sum of squares hierarchy by Lasserre has become an established technique for solving polynomial optimization problems. It provides a monotonically increasing series of tight bounds, but has well-known scalability limitations. For structured optimization problems, the term-sparsity SOS (TSSOS) approach scales much better due to block-diagonal matrices, obtained by completing the connected components of adjacency … Read more

Sparse Polynomial Optimization with Unbounded Sets

This paper considers sparse polynomial optimization with unbounded sets. When the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierarchy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for each variable clique according to the correlative sparsity pattern. Under the running intersection property, we prove that this hierarchy … Read more