A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization

\(\) In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. … Read more

Orbital Crossover

Symmetry in optimization has been known to wreak havoc in optimization algorithms. Often, some of the hardest instances are highly symmetric. This is not the case in linear programming, as symmetry allows one to reduce the size of the problem, possibly dramatically, while still maintaining the same optimal objective value. This is done by aggregating … Read more

Regularized Nonsmooth Newton Algorithms for Best Approximation

We consider the problem of finding the best approximation point from a polyhedral set, and its applications, in particular to solving large-scale linear programs. The classical projection problem has many various and many applications. We study a regularized nonsmooth Newton type solution method where the Jacobian is singular; and we compare the computational performance to … Read more

Handling Symmetries in Mixed-Integer Semidefinite Programs

Symmetry handling is a key technique for reducing the running time of branch-and-bound methods for solving mixed-integer linear programs. In this paper, we generalize the notion of (permutation) symmetries to mixed-integer semidefinite programs (MISDPs). We first discuss how symmetries of MISDPs can be automatically detected by finding automorphisms of a suitably colored auxiliary graph. Then … Read more

A Note on Semidefinite Representable Reformulations for Two Variants of the Trust-Region Subproblem

Motivated by encouraging numerical results in the literature, in this note we consider two specific variants of the trust-region subproblem and provide exact semidefinite representable reformulations. The first is over the intersection of two balls; the second is over the intersection of a ball and a special second-order conic representable set. Different from the technique … Read more

Approximation Hierarchies for Copositive Cone over Symmetric Cone and Their Comparison

We first provide an inner-approximation hierarchy described by a sum-of-squares (SOS) constraint for the copositive (COP) cone over a general symmetric cone. The hierarchy is a generalization of that proposed by Parrilo (2000) for the usual COP cone (over a nonnegative orthant). We also discuss its dual. Second, we characterize the COP cone over a … Read more

Superlinear convergence of an infeasible interior point algorithm on the homogeneous feasibility model of a semi-definite program

In the literature, superlinear convergence of implementable polynomial-time interior point algorithms to solve semi-definite programs (SDPs) can only be shown by (i) assuming that the given SDP is nondegenerate and modifying these algorithms, or (ii) considering special classes of SDPs, such as the class of linear semi-definite feasibility problems, when a suitable initial iterate is … Read more

Linear optimization over homogeneous matrix cones

A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the … Read more