An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex

In this paper, we describe a new active-set algorithmic framework for minimizing a non-convex function over the unit simplex. At each iteration, the method makes use of a rule for identifying active variables (i.e., variables that are zero at a stationary point) and specific directions (that we name active-set gradient related directions) satisfying a new “nonorthogonality” type of condition. We prove global convergence to stationary points when using an Armijo line search in the given framework. We further describe three different examples of active-set gradient related directions that guarantee linear convergence rate (under suitable assumptions). Finally, we report numerical experiments showing the effectiveness of the approach.

Citation

https://doi.org/10.1007/s10589-020-00195-x

Article

Download

View An Active-Set Algorithmic Framework for Non-Convex Optimization Problems over the Simplex