Packing Ovals In Optimized Regular Polygons

We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, here we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in R". Our solution strategy is based on the use of embedded Lagrange multipliers, followed by nonlinear (global-local) optimization. The numerical results are attained using randomized starting solutions refined by a single call to a local optimization solver. We obtain credible, tight packings for packing 4 to 10 ovals into regular polygons with 3 to 10 sides in all (224) test problems presented here, and for other similarly difficult packing problems.

Citation

Research Report, November 2018. Submitted for publication.

Article

Download

View Packing Ovals In Optimized Regular Polygons