Adaptive Large Neighborhood Search for Mixed Integer Programming

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.

Citation

ZIB Report 18-60, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Dec. 2018, https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/7116

Article

Download

View PDF