Evaluating approximations of the semidefinite cone with trace normalized distance

We evaluate the dual cone of the set of diagonally dominant matrices (resp., scaled diagonally dominant matrices), namely ${\cal DD}_n^*$ (resp., ${\cal SDD}_n^*$), as an approximation of the semidefinite cone. We prove that the norm normalized distance, proposed by Blekherman et al. (2022), between a set ${\cal S}$ and the semidefinite cone has the same value whenever ${\cal SDD}_n^* \subseteq {\cal S} \subseteq {\cal DD}_n^*$. This implies that the norm normalized distance is not a sufficient measure to evaluate these approximations. As a new measure to compensate for the weakness of that distance, we propose a new distance, called the trace normalized distance. We prove that the trace normalized distance between ${\cal DD}_n^*$ and ${\cal S}^n_+$ has a different value from the one between ${\cal SDD}_n^*$ and ${\cal S}^n_+$ and give the exact values of these distances.

Citation

Discussion Paper Series, No.1376, Department of Policy and Planning Sciences, University of Tsukuba

Article

Download

View Evaluating approximations of the semidefinite cone with trace normalized distance