A Novel Solution Methodology for Wasserstein-based Data-Driven Distributionally Robust Problems

Distributionally robust optimization (DRO) is a mathematical framework to incorporate ambiguity over the actual data-generating probability distribution. Data-driven DRO problems based on the Wasserstein distance are of particular interest for their sound mathematical properties. For right-hand-sided uncertainty, however, existing methods rely on dual vertex enumeration rendering the problem intractable in practical applications. In this context, … Read more

A conservative convergent solution for continuously distributed two-stage stochastic optimization problems

Two-stage stochastic programming is a mathematical framework widely used in real- life applications such as power system operation planning, supply chains, logistics, inventory management, and financial planning. Since most of these problems cannot be solved analytically, decision makers make use of numerical methods to obtain a near-optimal solution. Some applica- tions rely on the implementation … Read more