Software for data-based stochastic programming using bootstrap estimation

In this paper we describe software for stochastic programming that uses only sampled data to obtain both a consistent sample-average solution and a consistent estimate of confidence intervals for the optimality gap using bootstrap and bagging. The underlying distribution whence the samples come is not required. Article Download View Software for data-based stochastic programming using … Read more

Stochastic nested primal-dual method for nonconvex constrained composition optimization

In this paper we study the nonconvex constrained composition optimization, in which the objective contains a composition of two expected-value functions whose accurate information is normally expensive to calculate. We propose a STochastic nEsted Primal-dual (STEP) method for such problems. In each iteration, with an auxiliary variable introduced to track inner layer function values we … Read more

Statistical performance of subgradient step-size update rules in Lagrangian relaxations of chance-constrained optimization models

Lagrangian relaxation schemes, coupled with a subgradient procedure, are frequently employed to solve chance-constrained optimization models. The subgradient procedure typically relies on a step-size update rule. Although there is extensive research on the properties of these step-size update rules, there is little consensus on which rules are most suited in practice. This is especially so … Read more

A momentum-based linearized augmented Lagrangian method for nonconvex constrained stochastic optimization

    Nonconvex constrained stochastic optimization  has emerged in many important application areas. With general functional constraints it minimizes the sum of an expectation function and a convex  nonsmooth  regularizer. Main challenges  arise due to the stochasticity in the random integrand and the possibly nonconvex functional constraints. To cope with these issues we propose a … Read more

Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics

We introduce a novel aggregation framework to address multi-stage stochastic programs with mixed-integer state variables and continuous local variables (MSILPs). Our aggregation framework imposes additional structure to the integer state variables by leveraging the information of the underlying stochastic process, which is modeled as a Markov chain (MC). We present a novel branch-and-cut algorithm integrated … Read more

Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity, which is both of theoretical as well as practical interest. This area of … Read more

A General Wasserstein Framework for Data-driven Distributionally Robust Optimization: Tractability and Applications

Data-driven distributionally robust optimization is a recently emerging paradigm aimed at finding a solution that is driven by sample data but is protected against sampling errors. An increasingly popular approach, known as Wasserstein distributionally robust optimization (DRO), achieves this by applying the Wasserstein metric to construct a ball centred at the empirical distribution and finding … Read more

A single cut proximal bundle method for stochastic convex composite optimization

In this paper, we consider optimization problems where the objective is the sum of a function given by an expectation and a Lipschitz continuous convex function. For such problems, we pro- pose a Stochastic Composite Proximal Bundle (SCPB) method with optimal complexity. The method does not require estimation of parameters involved in the assumptions on … Read more

Routing and resource allocation in non-profit settings with equity and efficiency measures under demand uncertainty

Motivated by food distribution operations for non-profit organizations, we study a variant of the stochastic routing-allocation problem under demand uncertainty, in which one decides the assignment of trucks for demand nodes, the sequence of demand nodes to visit (i.e., truck route), and the allocation of food supply to each demand node. We propose three stochastic … Read more

A Stochastic Optimization Approach to Energy-Efficient Underground Timetabling under Uncertain Dwell and Running Times

We consider a problem from the context of energy-efficient underground railway timetabling, in which an existing timetable draft is improved by slightly changing departure and running times. In practice, synchronization between accelerating and braking trains to utilize regenerative braking plays a major role for the energy-efficiency of a timetable. Since deviations from a planned timetable … Read more