Multi-step discrete-time Zhang neural networks with application to time-varying nonlinear optimization

As a special kind of recurrent neural networks, Zhang neural network (ZNN) has been successfully applied to various time-variant problems solving. In this paper, we first propose a special two-step Zhang et al. discretization (ZeaD) formula and a general two-step ZeaD formula, whose truncation errors are ${O}(\tau^3)$ and ${O}(\tau^2)$, respectively, and $\tau>0$ denotes the sampling … Read more

A class of derivative-free CG projection methods for nonsmooth equations with an application to the LASSO problem

In this paper, based on a modified Gram-Schmidt (MGS) process, we propose a class of derivative-free conjugate gradient (CG) projection methods for nonsmooth equations with convex constraints. Two attractive features of the new class of methods are: (i) its generated direction contains a free vector, which can be set as any vector such that the … Read more

The symmetric ADMM with positive-indefinite proximal regularization and its application

Due to update the Lagrangian multiplier twice at each iteration, the symmetric alternating direction method of multipliers (S-ADMM) often performs better than other ADMM-type methods. In practice, some proximal terms with positive definite proximal matrices are often added to its subproblems, and it is commonly known that large proximal parameter of the proximal term often … Read more