Scenario generation using historical data paths

In this paper, we present a method for generating scenarios by selection from historical data. We start with two models for a univariate single-period case and then extend the better-performing one to the case of selecting sequences of multivariate data. We then test the method on data series for wind- and solar-power generation in Scandinavia. … Read more

Forecast-based scenario-tree generation method

Sometimes, the best available information about an uncertain future is a single forecast. On the other hand, stochastic-programming models need future data in the form of scenario trees. While a single forecast does not provide enough information to construct a scenario tree, a forecast combined with historical data does—but none of the standard scenario-generation methods … Read more

Multi-horizon stochastic programming

Infrastructure-planning models are challenging because of their combination of different time scales: while planning and building the infrastructure involves strategic decisions with time horizons of many years, one needs an operational time scale to get a proper picture of the infrastructure’s performance and profitability. In addition, both the strategic and operational levels are typically subject … Read more

A copula-based heuristic for scenario generation

This paper presents a new heuristic for generating scenarios for two-stage stochastic programs. The method uses copulas to describe the dependence between the marginal distributions, instead of the more common correlations. The heuristic is then tested on a simple portfolio-selection model, and compared to two other scenario-generation methods. Citation Published in Computational Management Science, 11 … Read more