Nurse Staffing under Absenteeism: A Distributionally Robust Optimization Approach

We study the nurse staffing problem under random nurse demand and absenteeism. While the demand uncertainty is exogenous (stemming from the random patient census), the absenteeism uncertainty is endogenous, i.e., the number of nurses who show up for work partially depends on the nurse staffing level. For the quality of care, many hospitals have developed … Read more

Data-Driven Distributionally Robust Appointment Scheduling over Wasserstein Balls

We study a single-server appointment scheduling problem with a fixed sequence of appointments, for which we must determine the arrival time for each appointment. We specifically examine two stochastic models. In the first model, we assume that all appointees show up at the scheduled arrival times yet their service durations are random. In the second … Read more