Target-Oriented Regret Minimization for Satisficing Monopolists

We study a robust monopoly pricing problem where a seller aspires to sell an item to a buyer. We assume that the seller, unaware of the buyer’s willingness to pay, ambitiously optimizes over a space of all individual rational and incentive compatible mechanisms with a regret-type objective criterion. Using robust optimization, Kocyigit et al. (2021) … Read more

A General Wasserstein Framework for Data-driven Distributionally Robust Optimization: Tractability and Applications

Data-driven distributionally robust optimization is a recently emerging paradigm aimed at finding a solution that is driven by sample data but is protected against sampling errors. An increasingly popular approach, known as Wasserstein distributionally robust optimization (DRO), achieves this by applying the Wasserstein metric to construct a ball centred at the empirical distribution and finding … Read more

A New Dual-Based Cutting Plane Algorithm for Nonlinear Adjustable Robust Optimization

This paper explores a class of nonlinear Adjustable Robust Optimization (ARO) problems, containing here-and-now and wait-and-see variables, with uncertainty in the objective function and constraints. By applying Fenchel’s duality on the wait-and-see variables, we obtain an equivalent dual reformulation, which is a nonlinear static robust optimization problem. Using the dual formulation, we provide conditions under … Read more

Robust Contextual Portfolio Optimization with Gaussian Mixture Models

We consider the portfolio optimization problem with contextual information that is available to better quantify and predict the uncertain returns of assets. Motivated by the regime modeling techniques for the finance market, we consider the setting where both the uncertain returns and the contextual information follow a Gaussian Mixture (GM) distribution. This problem is shown … Read more

Hidden convexity in a class of optimization problems with bilinear terms

In this paper we identify a new class of nonconvex optimization problems that can be equivalently reformulated to convex ones. These nonconvex problems can be characterized by convex functions with bilinear arguments. We describe several examples of important applications that have this structure. A reformulation technique is presented which converts the problems in this class … Read more

A Survey on Bilevel Optimization Under Uncertainty

Bilevel optimization is a very active field of applied mathematics. The main reason is that bilevel optimization problems can serve as a powerful tool for modeling hierarchical decision making processes. This ability, however, also makes the resulting problems challenging to solve—both in theory and practice. Fortunately, there have been significant algorithmic advances in the field … Read more

Decision Rule Approaches for Pessimistic Bilevel Linear Programs under Moment Ambiguity with Facility Location Applications

We study a pessimistic stochastic bilevel program in the context of sequential two-player games, where the leader makes a binary here-and-now decision, and the follower responds a continuous wait-and-see decision after observing the leader’s action and revelation of uncertainty. Only the information of the mean, covariance, and support is known. We formulate the problem as … Read more

The Analytics of Robust Satisficing

We propose a new prescriptive analytics model based on robust satisficing that incorporates a prediction model to determine the here-and-now decision that would achieve a target expected reward as well as possible under both risk ambiguity and estimation uncertainty. The reward function of the decision model depends on some observable parameters whose future realizations are … Read more

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Robust Optimization with Continuous Decision-Dependent Uncertainty

We consider a robust optimization problem with continuous decision-dependent uncertainty (RO-CDDU). RO-CDDU has two main features that have not been addressed in the literature: an uncertainty set with linear dependence on continuous decision variables and a convex piecewise-linear objective function. We prove that RO-CDDU is NP-hard in general. To address the computational challenges, we reformulate … Read more