A Sparsity Preserving Stochastic Gradient Method for Composite Optimization
We propose new stochastic gradient algorithms for solving convex composite optimization problems. In each iteration, our algorithms utilize a stochastic oracle of the gradient of the smooth component in the objective function. Our algorithms are based on a stochastic version of the estimate sequence technique introduced by Nesterov (Introductory Lectures on Convex Optimization: A Basic … Read more