Spatial branch-and-bound for nonconvex separable piecewise linear optimization

Nonconvex separable piecewise linear functions (PLFs) frequently appear in applications and to approximate nonlinearitites. The standard practice to formulate nonconvex PLFs is from the perspective of discrete optimisation, using special ordered sets and mixed integer linear programs (MILPs). In contrast, we take the viewpoint of global continuous optimization and present a spatial branch-and-bound algorithm (sBB) … Read more