A new framework to generate Lagrangian cuts in multistage stochastic mixed-integer programming

Based on recent advances in Benders decomposition and two-stage stochastic integer programming we present a new generalized framework to generate Lagrangian cuts in multistage stochastic mixed-integer linear programming (MS-MILP). This framework can be incorporated into decomposition methods for MS-MILPs, such as the stochastic dual dynamic integer programming (SDDiP) algorithm. We show how different normalization techniques … Read more

On Lipschitz regularization and Lagrangian cuts in multistage stochastic mixed-integer linear programming

We provide new theoretical insight on the generation of linear and non-convex cuts for value functions of multistage stochastic mixed-integer programs based on Lagrangian duality. First, we analyze in detail the impact that the introduction of copy constraints, and especially, the choice of the accompanying constraint set for the copy variable have on the properties … Read more

Spatial branch-and-bound for nonconvex separable piecewise linear optimization

Nonconvex separable piecewise linear functions (PLFs) frequently appear in applications and to approximate nonlinearitites. The standard practice to formulate nonconvex PLFs is from the perspective of discrete optimisation, using special ordered sets and mixed integer linear programs (MILPs). In contrast, we take the viewpoint of global continuous optimization and present a spatial branch-and-bound algorithm (sBB) … Read more

Stochastic dual dynamic programming and its variants – a review

We provide a tutorial-type review on stochastic dual dynamic programming (SDDP), as one of the state-of-the-art solution methods for large-scale multistage stochastic programs. Since introduced about 30 years ago for solving large-scale multistage stochastic linear programming problems in energy planning, SDDP has been applied to practical problems from several fields and is enriched by various … Read more