## ROOT-SGD: Sharp Nonasymptotics and Asymptotic Efficiency in a Single Algorithm

We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as \emph{Recursive One-Over-T SGD} (ROOTSGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and … Read more