Weight reduction inequalities revisited

In this paper, we propose an extension of the classical weight reduction inequalities for the binary knapsack polytope for settings where the maximum-weight item in the associated pack is not unique. We derive sufficient conditions under which the extended inequalities are facet-defining and identify conditions under which they strictly dominate the original weight reduction inequalities. … Read more

Facets from solitary items for the 0/1 knapsack polytope

We introduce a new class of valid inequalities for any 0/1 knapsack polytope, called Solitary item inequality, which are facet-defining. We prove that any facet-defining inequality of a 0/1 knapsack polytope with nonnegative integral coefficients and right hand side 1 belongs to this class, and hence, the set of facet-defining inequalities corresponding to strong covers … Read more