An adaptive regularization algorithm for unconstrained optimization with inexact function and derivatives values

An adaptive regularization algorithm for unconstrained nonconvex optimization is proposed that is capable of handling inexact objective-function and derivative values, and also of providing approximate minimizer of arbitrary order. In comparison with a similar algorithm proposed in Cartis, Gould, Toint (2022), its distinguishing feature is that it is based on controlling the relative error between … Read more

Adaptive Regularization Minimization Algorithms with Non-Smooth Norms

A regularization algorithm (AR1pGN) for unconstrained nonlinear minimization is considered, which uses a model consisting of a Taylor expansion of arbitrary degree and regularization term involving a possibly non smooth norm. It is shown that the non-smoothness of the norm does not affect the O(\epsilon_1^{-(p+1)/p}) upper bound on evaluation complexity for finding first-order \epsilon_1-approximate minimizers … Read more

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points

This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\”older … Read more