Asynchronous Adaptive Gradient Tracking Methods for Distributed Stochastic Optimization Problems with Decision-dependent Distributions

This paper proposes a distributed asynchronous adaptive gradient tracking method, DASYAGT, to solve the distributed stochastic optimization problems with decision-dependent distributions over directed graphs. DASYAGT employs the local adaptive gradient to estimate the gradient of the objective function and introduces the auxiliary running-sum variable to handle asynchrony. We show that the iterates generated by DASYAGT … Read more