First-order Methods for Unconstrained Vector Optimization Problems: A Unified Majorization-Minimization Perspective

In this paper, we develop a unified majorization-minimization scheme and convergence analysis with first-order surrogate functions for unconstrained vector optimization problems (VOPs). By selecting different surrogate functions, the unified method can be reduced to various existing first-order methods. The unified convergence analysis reveals that the slow convergence of the steepest descent method is primarily attributed … Read more

Preconditioned Barzilai-Borwein Methods for Multiobjective Optimization Problems

Preconditioning is a powerful approach for solving ill-conditioned problems in optimization, where a preconditioning matrix is used to reduce the condition number and speed up the convergence of first-order method. Unfortunately, it is impossible to capture the curvature of all objective functions with a single preconditioning matrix in multiobjective optimization. Instead, second-order methods for multiobjective … Read more

Two efficient gradient methods with approximately optimal stepsizes based on regularization models for unconstrained optimization

It is widely accepted that the stepsize is of great significance to gradient method. Two efficient gradient methods with approximately optimal stepsizes mainly based on regularization models are proposed for unconstrained optimization. More exactly, if the objective function is not close to a quadratic function on the line segment between the current and latest iterates, … Read more