Test Instances for Multiobjective Mixed-Integer Nonlinear Optimization

A suitable set of test instances, also known as benchmark problems, is a key ingredient to systematically evaluate numerical solution algorithms for a given class of optimization problems. While in recent years several solution algorithms for the class of multiobjective mixed-integer nonlinear optimization problems have been proposed, there is a lack of a well-established set … Read more

(ε-)Efficiency in Fractional Vector Optimization

The issue of characterizing completely efficient (Pareto) solutions to a fractional vector (multiobjective or multicriteria) minimization problem, where the involved functions are convex, has not been addressed previously. Thanks to an earlier characterization of weak efficiency in difference vector optimization by El Maghri, we get a vectorial necessary and sufficient condition given in terms of … Read more

An Explicit Three-Term Polak-Ribière-Polyak Conjugate Gradient Method for Bicriteria Optimization

We propose in this paper a Polak-Ribière-Polyak conjugate gradient type method for solving bicriteria optimization problems by avoiding scalarization techniques. Two particular advantages in this contribution are to be noted. First, the suggested descent direction common to both criteria may be directly computed by a given formula without solving any intermediate subproblem. Second, the descent … Read more

An approximation algorithm for multi-objective mixed-integer convex optimization

In this article we introduce an algorithm that approximates Pareto fronts of multiobjective mixed-integer convex optimization problems. The algorithm constructs an inner and outer approximation of the front exploiting the convexity of the patches and is applicable to problems with an arbitrary number of criteria. In the algorithm, the problem is decomposed into patches, which … Read more

On the Relationship Between the Value Function and the Efficient Frontier of a Mixed Integer Linear Optimization Problem

In this paper, we investigate the connection between the efficient frontier (EF) of a general multiobjective mixed integer linear optimization problem (MILP) and the so-called restricted value function (RVF) of a closely related single-objective MILP. We demonstrate that the EF of the multiobjective MILP is comprised of points on the boundary of the epigraph of … Read more

A Test Instance Generator for Multiobjective Mixed-integer Optimization

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. … Read more

Bilevel optimization with a multi-objective lower-level problem: Risk-neutral and risk-averse formulations

In this work, we propose different formulations and gradient-based algorithms for deterministic and stochastic bilevel problems with conflicting objectives in the lower level. Such problems have received little attention in the deterministic case and have never been studied from a stochastic approximation viewpoint despite the recent advances in stochastic methods for single-level, bilevel, and multi-objective … Read more

Generating balanced workload allocations in hospitals

As pressure on healthcare systems continues to increase, it is becoming more and more important for hospitals to properly manage the high workload levels of their staff. Ensuring a balanced workload allocation between various groups of employees in a hospital has been shown to contribute considerably towards creating sustainable working conditions. However, allocating work to … Read more

Set-based Robust Optimization of Uncertain Multiobjective Problems via Epigraphical Reformulations

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type … Read more

A Branch and Bound Algorithm for Biobjective Mixed Integer Quadratic Programs

Multiobjective quadratic programs (MOQPs) are appealing since convex quadratic programs have elegant mathematical properties and model important applications. Adding mixed-integer variables extends their applicability while the resulting programs become global optimization problems. We design and implement a branch and bound (BB) algorithm for biobjective mixed-integer quadratic programs (BOMIQPs). In contrast to the existing algorithms in … Read more