Pareto sensitivity, most-changing sub-fronts, and knee solutions

When dealing with a multi-objective optimization problem, obtaining a comprehensive representation of the Pareto front can be computationally expensive. Furthermore, identifying the most representative Pareto solutions can be difficult and sometimes ambiguous. A popular selection are the so-called Pareto knee solutions, where a small improvement in any objective leads to a large deterioration in at … Read more

Local Upper Bounds for Polyhedral Cones

The concept of local upper bounds plays an important role for numerical algorithms in nonconvex, integer, and mixed-integer multiobjective optimization with respect to the componentwise partial ordering, that is, where the ordering cone is the nonnegative orthant. In this paper, we answer the question on whether and how this concept can be extended to arbitrary … Read more

On Two Vectorization Schemes for Set-valued Optimization

In this paper, we investigate two known solution approaches for set-valued optimization problems, both of which are based on so-called vectorization strategies. These strategies consist of deriving a parametric family of multi-objective optimization problems whose optimal solution sets approximate those of the original set-valued problem with arbitrary accuracy in a certain sense. Thus, these approaches … Read more

SMOP: Stochastic trust region method for multi-objective problems

The problem considered is a multi-objective optimization problem, in which the goal is to find an optimal value of a vector function representing various criteria. The aim of this work is to develop an algorithm which utilizes the trust region framework with probabilistic model functions, able to cope with noisy problems, using inaccurate functions and … Read more

New Nonlinear Conjugate Gradient Methods with Guaranteed Descent for Multi-Objective Optimization

In this article, we present several examples of special nonlinear conjugate gradient directions for nonlinear (non-convex) multi-objective optimization. These directions provide a descent direction for the objectives, independent of the line-search. This way, we can provide an algorithm with simple, Armijo-like backtracking and prove convergence to first-order critical points. In contrast to other popular conjugate … Read more

Universal nonmonotone line search method for nonconvex multiobjective optimization problems with convex constraints

In this work we propose a general nonmonotone line-search method for nonconvex multi-objective optimization problems with convex constraints. At the \(k\)th iteration, the degree of nonmonotonicity is controlled by a vector \(\nu_{k}\) with nonnegative components. Different choices for \(\nu_{k}\) lead to different nonmonotone step-size rules. Assuming that the sequence \(\left\{\nu_{k}\right\}_{k\geq 0}\) is summable, and that … Read more

Scaled Proximal Gradient Methods for Multiobjective Optimization: Improved Linear Convergence and Nesterov’s Acceleration

Over the past two decades, descent methods have received substantial attention within the multiobjective optimization field. Nonetheless, both theoretical analyses and empirical evidence reveal that existing first-order methods for multiobjective optimization converge slowly, even for well-conditioned problems, due to the objective imbalances. To address this limitation, we incorporate curvature information to scale each objective within … Read more

On Subproblem Tradeoffs in Decomposition for Multiobjective Optimization

Multiobjective optimization is widely used in applications for modeling and solving complex decision-making problems. To help resolve computational and cognitive difficulties associated with problems which have more than 3 or 4 objectives, we propose a decomposition and coordination methodology to support decision making for large multiobjective optimization problems (MOPs) with global, quasi-global, and local variables. … Read more

Designing sustainable diet plans by solving triobjective integer programs

We present an algorithm for triobjective nonlinear integer programs that combines the epsilon-constrained method with available oracles for biobjective integer programs. We prove that our method is able to detect the nondominated set within a finite number of iterations. Specific strategies to avoid the detection of weakly nondominated points are devised. The method is then … Read more

Analysis and discussion of single and multi-objective IP formulations for the Truck-to-dock Door Assignment Problem

This paper is devoted to the Truck-to-dock Door Assignment Problem. Two integer programming formulations introduced after 2009 are examined. Our review of the literature takes note of the criticisms and limitations addressed to the seminal work of 2009. Although the published adjustments that followed present strong argument and technical background, we have identified several errors, … Read more