Preconditioned Barzilai-Borwein Methods for Multiobjective Optimization Problems

Preconditioning is a powerful approach for solving ill-conditioned problems in optimization, where a preconditioning matrix is used to reduce the condition number and speed up the convergence of first-order method. Unfortunately, it is impossible to capture the curvature of all objective functions with a single preconditioning matrix in multiobjective optimization. Instead, second-order methods for multiobjective … Read more

Second-Order Strong Optimality and Second-Order Duality for Nonsmooth Constrained Multiobjective Fractional Programming Problems

\(\) This paper investigates constrained nonsmooth multiobjective fractional programming problem (NMFP) in real Banach spaces. It derives a quotient calculus rule for computing the first- and second-order Clarke derivatives of fractional functions involving locally Lipschitz functions. A novel second-order Abadie-type regularity condition is presented, defined with the help of the Clarke directional derivative and the … Read more

Uncertainty Quantification for Multiobjective Stochastic Convex Quadratic Programs

A multiobjective stochastic convex quadratic program (MOSCQP) is a multiobjective optimization problem with convex quadratic objectives that are observed with stochastic error. MOSCQP is a useful problem formulation arising, for example, in model calibration and nonlinear system identification when a single regression model combines data from multiple distinct sources, resulting in a multiobjective least squares … Read more

The convergence rate of the Sandwiching algorithm for convex bounded multiobjective optimization

Sandwiching algorithms, also known as Benson-type algorithms, approximate the nondominated set of convex bounded multiobjective optimization problems by constructing and iteratively improving polyhedral inner and outer approximations. Using a set-valued metric, an estimate of the approximation quality is determined as the distance between the inner and outer approximation. The convergence of the algorithm is evaluated … Read more

Computing an approximation of the nondominated set of multi-objective mixed-integer nonlinear optimization problems

In practical applications, one often has not only one, but several objectives that need to be optimized simultaneously. What is more, modeling such real world problems usually involves using both, continuous and integer variables. This then results in multi-objective mixed-integer optimization problems, which are in focus of this paper. We present an approximation concept, called … Read more

Bi-level multi-criteria optimization to include linear energy transfer into proton treatment planning

In proton therapy treatment planning, the aim is to ensure tumor control while sparing the various surrounding risk structures. The biological effect of the irradiation depends on both physical dose and linear energy transfer (LET). In order to include LET alongside physical dose in plan creation, we propose to formulate the proton treatment planning problem … Read more

An enhanced mathematical model for optimal simultaneous preventive maintenance scheduling and workshop planning

For a system to stay operational, maintenance of its components is required and to maximize the operational readiness of a system, preventive maintenance planning is essential. There are two stakeholders—a system operator and a maintenance workshop—and a contract regulating their joint activities. Each contract leads to a bi-objective optimization problem. Components that require maintenance are … Read more

Efficient Computation of the Approximation Quality in Sandwiching Algorithms

Computing the approximation quality is a crucial step in every iteration of Sandwiching algorithms (also called Benson-type algorithms) used for the approximation of convex Pareto fronts, sets or functions. Two quality indicators often used in these algorithms are polyhedral gauge and epsilon indicator. In this article, we develop an algorithm to compute the polyhedral gauge … Read more

K-Shortest Simple Paths Using Biobjective Path Search

In this paper we introduce a new algorithm for the k-Shortest Simple Paths (k-SSP) problem with an asymptotic running time matching the state of the art from the literature. It is based on a black-box algorithm due to Roddity and Zwick that solves at most 2k instances of the Second Shortest Simple Path (2-SSP) problem … Read more

A Criterion Space Search Feasibility Pump Heuristic for Solving Maximum Multiplicative Programs

We study a class of nonlinear optimization problems with diverse practical applications, particularly in cooperative game theory. These problems are referred to as Maximum Multiplicative Programs (MMPs), and can be conceived as instances of “Optimization Over the Frontier” in multiobjective optimization. To solve MMPs, we introduce a feasibility pump-based heuristic that is specifically designed to … Read more