Easy distributions for combinatorial optimization problems with probabilistic constraints
We show how we can linearize probabilistic linear constraints with binary variables when all coefficients are distributed according to either $\mathcal{N}(\mu_i,\lambda \mu_i)$, for some $\lambda >0$ and $\mu_i>0$, or $\Gamma(k_i,\theta)$ for some $\theta >0$ and $k_i>0$. The constraint can also be linearized when the coefficients are independent and identically distributed if they are, besides, either … Read more